Revival of the SQL Tuner

. —
Tuning techniques and more!
Sheryl M. Larsen, BMC

Table of Contents

SQL Performance Case Studies Using a Proven Method
DB2 Engine Components Tuning Example 1 — OPTIMIZE FOR n
Predicate Processing Intelligence ROWS/FETCH FIRST n ROWS ONLY

Tuning Example 2, 3, 4 — No Operations
Tuning Example 5, 6 — Fake Filtering
Tuning Example 7 — Index Design

Tuning Queries
When? Why? How?
Introduction to Proven SQL Tuning

Methods Extreme Tuning

Tuning Example 8 - Distinct Table
Expressions

Tuning Example 9 — Anti-Joins

Tuning Example 10 — (Predicate OR 0 = 1)
Tuning Example 11 — Extreme Cross
Query Block Optimization

When are Access Paths Good or Bad?
Variations of index access
Variations of table access
Variations of join methods

Reading the Optimizer’s Mind
Visual Plan Analysis

http://www.bmcsoftware.uk/forms/MCO DB211Catalog
PosterRefGuide Collateral BMCcom V2.html

2

Description:

This class is all about increasing the attendee’s ability to identify and fix access
path problems

Skills Taught:

sLearn how DB2 executes index, table and join access paths

sLearn when each access path is optimal and non-optimal

sLearn recommended SQL tuning techniques for changing the DB2 optimizer’s
mind

sLearn how to identify potential access path problems

Tuning SQL — Sheryl M. Larsen, Inc.

DB2 Engine Components

SQL Execution

Result

For static SQL ,DB2 will use the stored access path in the Directory.

REOPT (ONCE), REOPT(AUTO) * DB2 9

For dynamic SQL ,DB2 will check the Dynamic Statement Cache for an exact
match of the statement.

If found, the cached associated access path will be used.

REOPT(AUTO) *DB2 9

For dynamic SQL, DB2 will check the Dynamic Statement Cache for an exact
match of the statement.

If found, the cached associated access path will be used.

If found but the parameter marker values are not significantly different, the
cached associated access path will be used.

If not found, the Optimizer costs out a new access path for use and stores it in
the cache with the new statement

REOPT(Always)

For each execution, the Optimizer costs out a new access path for use

Tuning SQL

Page Processing — z/0OS

‘REC1.=7?
i GR2>?
 E3<€?
 C4=
 C5 BETWEEN ? AND ?
- C6IN(?,7?,7)

ERBY C1, C2,C3

Stage 1 filtering is done first against the 4K pages brought into the
Buffer Pool.

Stage 2 only examines the rows that qualify after Stage 1 filtering,
however, the entire row or index entry is still on the 4k page sitting in the
Buffer Pool.

Once Stage 2 is complete, data transformations requested on the
SELECT clause are performed prior to returning one result value at a
time to the calling program.

Query response time is dependent on:

*The number of I/O’s to pull data and/or index pages in the Buffer Pool
*The number of rows left after Stage 1 filtering

*The number of rows left after Stage 2 filtering

*The sequence the rows are in the Buffer Pool

*The amount of translations preformed on the result values

The less rows requested, the less columns requested, the less
transformations, the faster the query goes.

Tuning SQL — Sheryl M. Larsen, Inc.

Summary
Of
Predicate
Processing

Indexable Stage 1
Predicates

Stage 1 Predicates

COL op ALL (non subqg)

COL IN (non subq)

COL = expression

1.

Indexable = The predicate is a candidate for Matching
Index access. Whenthe optimizer chooses to use a

P

Predicate Type Indexable | Stage 1 Predicate Type Indexable | Stage 1 h .

COL = value ¥ ¥ M

COL = noncol expr Y COL <> value N Y .

COL IS NULL £ COL <> noncol expr N Y www.ib

gg:: op value i S COL NOT BETWEEN valuet N Y

op noncol expr : AND value2 m m

COL BETWEEN value? AND = COL NOT BETWEEN noncol N Y 4L com/s

COL BETWEEN noncol expri expr1 AND noncol expr2 upport/

AND noncol expr2 COL NOT IN (list) N Y

COL LIKE "pattern’ & COL NOT LIKE ' char N Y

COLIN (iisy - : COL LIKE "char N Y knowled
ost variable & COL LIKE '_char N Y

Ti.coL=T2.CoL =3 | T1.cOL <> T2.COL N Y gecenter

K op T2.COL & —

COL=(non subq) & T1.COL1 =T1.COL2 N Y

COL op (non subq) o COL <> (non subq) N Y / en / SSE

€OL op ANY (non subg) & COL IS DISTINCT FROM N Y

(COLA1,...COLn) IN (non subq)

(COLA1, ...COLn) = (value1,
...valuen)

T1.COL = T2.colexpr
COL IS NOT NULL

COL IS NOT DISTINCT FROM
value

COL IS NOT DISTINCT FROM
noncol expression

OOOTOO.

COL IS NOT DISTINCT FROM
col expression

COL IS NOT DISTINCT FROM
non subq

< < < < <|<<| <|<|<|<|< <|<|<|<|<|<|</<| < <|<|</<<

T1.COL IS NOT DISTINCT
FROM T2.COL

< < < < <|<<| <|</<<</<|</</<|<|<|</< < =<<<<

T1.COL IS NOT DISTINCT

<

FROM T2.col expression

<

predicate in the probe of the index, the condition is named
Matching (matching the index). This is the first point that
filtering is possible in DB2.

Index Screening = The Stage 1 predicate is a candidate for
filtering on the index leaf pages. This is the second point of
filtering in DB2. If partitioned filters limiting partitions are

Data Screening = The Stage 1 predicate is a candidate for
filtering on the data pages. This is the third point of filtering

2.

also applied
3.

in DB2.
4.

Stage 2 = The predicate is not listed as Stage 1 and will be
applied on the remaining qualifying pages from Stage 1.
This is the fourth and final point of filtering in DB2.

EK
0.0/perf
/src/tpc/
db2z

mmar
redicate

processi
ng.html

12.
su

Tuning SQL — Sheryl M. Larsen, Inc.

Four Points of Filtering — DB2

WHERE C.LAST_NM LIKE ?

1. Indexable Stage 1 Probe C.TOKEN_NR =

2. Stage 1 Index Filtering R
3. Stage 1 Data FiIteringT AND LR BN X
4. Stage 2 yPe e

1| TOKEN_NR.
ROLE_CD

|
-

1. Indexable Stage 1 Probe - Only 28 for DB2 9, can be applied at this point. The ones
that will be applied are dependent on which index was chosen, the conditions on
the columns belonging in the index, and the sequence of those columns. If the first
column of the index is used in a “=“ predicate, the column is used to navigate the
tree along with the next column (2 matching). If the next column is used in a “=“
predicate, the column is used to navigate the tree along with the previous two
columns (3 matching). If the next column is not an “=" predicate, the matching
stops with this condition (4 matching) unless it is nonindexable or Stage 2 (3
matching). If the first column is not and “=* predicate, only the first column is used
to navigate the tree (1 matching). The number of matching columns usually = one
more than the last matching condition. Data types are required to match until V8.

2. Stage 1 Index Filtering - If there is no predicate involving the first column of the index,
tree navigation is not allowed (0 matching). Any Stage 1 predicate (all 40) can be
applied on the leaf page. This point of filtering is called index screening. Stage 2
conditions can also be applied after the Stage 1 conditions are applied (if this is
index only access and the Stage 2 column is included in the index - like COL9 above).
Data types are required to match until V8.

3. Stage 1 Data Filtering - Any Stage 1 condition that has not been applied in the index
entries is applied when the data page is accessed (because all columns live there).
Data types are required to match until V8.

4. Stage 2 Data Filtering - Any condition that is not Stage 1 will be applied at this point
(an infinite number of possible predicates). This filtering is still better than program
filtering which occurs after each element on the result row is transferred to the
calling program (one at a time). Any data type mismatches were filtered here until

Tuning SQL — Sheryl M. Larsen, Inc.

QL Review Checklist

Examine Program logic

Examine FROM clause

Verify Join conditions

Promote Stage 2’s and Stage 1 NOTs
Prune SELECT lists

Verify local filtering sequence

Analyze Access Paths

00 N O U1 A WIN BB

Tune if necessary

© copyright 2017 BMC

into the query.

List preferred join sequence for this and OUTER JOINs
cartesian joins

change access paths

delays in filtering and alter the access path

GROUP BY sequencing but not needed for the display.

the CPU required to disqualify rows

the production thresholds as closely as possible.
9. Tune if necessary — A topic for today!

1. Examine Program logic — check for program filtering and joining. Move work
2. Examine FROM clause — order of tables insignificant unless > 9 table joins.
3. Verify Join conditions — make sure every table is hooked up correctly to avoid
4. Promote Stage 2’s/Residuals and Stage 1’s if possible — promotions can

5. Verify data type matches — mismatched numeric and date/time will cause

6. Prune SELECT lists — remove columns with values determined to be static by
WHERE clause filtering. Remove columns used in the ORDER BY or

7. Verify local filtering sequence — If host variables are used, add parenthesis to
override the predetermined filtering sequence when necessary. This reduces

8. Analyze Access Paths — Only check the access path of the FINAL query, after
guery rewrite, bound with production statistics in a subsystem that resembles

Tuning SQL — Sheryl M. Larsen, Inc.

When to Tune Queries

+ Not until the query is coded the best it can be
+ All predicates are the best they can be

— Promote Stage 2’s if possible

— Promote Stage 1’s if possible

— Apply performance rules
¢ Check Access Paths of all Query Blocks

+ Apply data knowledge and program knowledge to
predict response time

+ If, and only if, the predicted service levels are not met
- TUNE!

© copyright 2017 BMC

Tuning SQL SQL — Sheryl M. Larsen, Inc.

How to Tune Queries

+ Do not change statistics, just keep accurate
* Do not panic
¢ Choose a proven, low maintenance, tuning technique
+ IBM’s list:
— OPTIMIZE FOR n ROWS
— FETCH FIRST n ROWS ONLY
— No Op (+0, CONCAT * /)
— TX.CX=TX.CX
— REOPT(VARS)
—0ON1=1

copyright 2017 BMC

Tuning SQL SQL — Sheryl M. Larsen, Inc.

SQL Tuning Examples

WHERE S.SALES_ID > 44

10 AND S.MNGR = :hv-mngr
AND S.REGION BETWEEN
:hvlo AND :hvhi CONCAT'* | No Operation

SELECT S.QTY_SOLD, S.ITEM_NO
_ S.ITEM_NAME

FROM SALE S

WHERE S.ITEM_NO > :hv

ORDER BY ITEM_NO .

FETCH FIRST 22 ROws onLy | Limited Fetch

WHERE B.BID BETWEEN
:hvlo AND :hvhi
AND B.BID = D.DID
AND B.SID = S.SID

AND B.COL3 >= :hv

AND B.COL4 >= :hv
copyright 2017 BMC

Tuning SQL — Sheryl M. Larsen, Inc.

10

Tuning Tools
¢ Sheryl’s Extended List
—Fake Filtering
* COL BETWEEN :hvl AND :hv2
v COL 5=:hy
—Table expressions with DISTINCT
* FROM (SELECT DISTINCT COL1, COL2
—Anti-Joins
—Extreme Experiments
—Index Changes
—MQT Design

11

© copyright 2017 BMC

Tuning SQL SQL — Sheryl M. Larsen, Inc.

11

All the Possible Access Paths

< S | g Data Pa O
gde & e < 0 d3 4 NP
bz 11 Prefe Table Scan
e e dex Acea Partitioned Table Scan Direct Row

(Bold names use an Index) 12

Tuning SQL SQL — Sheryl M. Larsen, Inc.

12

Accesses

One Fetch

IN(list) Index Access

Matching Index Access

NonMatching Index Access

Sparse Index Access

List Prefetch

Multiple Index Access

Non-Leaf Page
0 0

Limited Partition Scan With
Partitioning Index

Variations of Index | Limited Partition Scan

With NPI

Limited Partition Scan
With DPSI

Multidimensional Index Access
Db2 for LUW

+All can be parallel
+All can omit data acce

+Clustering index or
nonclustering acce

[Rum Paw

e ::=:":°: | | | |

13

RID = Row ID, a single pointer/address to a single row
BID = Block ID, a single pointer/address to a block of rows

Tuning SQL SQL — Sheryl M. Larsen, Inc.

13

One Fetch

SELECT MAX(C3)
FROM T1

WHERE C1 =L’

_ |

AND C2 =99

B
?j

© copyright 2017 BMC

1. For MIN or MAX on the first column of the index, retrieve the first or last leaf

page of the index only

2. For MIN or MAX on columns past the first column of the index, and equal
predicates on previous index columns, start at the root page and probe

through the nonleaf page

to the leaf page, applying all matching predicates

3. Proceed forward or backward on the leaf pages to satisfy the MIN or MAX

Note: All indexes ALLOW REVERSE SCANS for One Fetch, ORDER BY,
GROUP BY, and DISTINCT.

Tuning SQL SQL — Sheryl M. Larsen, Inc.

14

Matching Index Access

WHERE C1 =L’
AND C2 > 99
AND C3 = :hv

S ' G
_ _

e O

1. Start at the root page of the index and probe through the nonleaf page to the

leaf page, applying all matching predicates

Perform index screening, applying all nonmatching predicates to leaf pages

3. Follow qualifying row-ids to retrieve qualifying data pages, apply remaining
Stage 1 predicates and then remaining Stage 2 predicates

N

Note: A predicate becomes matching when a column is located in the first
position of the index and is referenced by an indexable predicate. If the
column is not in the first position of the index, the preceding columns are
included in the matching when they have consecutive = predicates. The total
number of matching columns includes all consecutive = predicate columns, in
the order of the index columns, plus one past the last = predicate. The higher
the percent matching, i.e. 4 out of 5 columns are 80% matching, the closer
the probe will be to the first qualifying row.

Tuning SQL SQL — Sheryl M. Larsen, Inc. 15

NonMatching Index Access

WHERE C2 > 99
AND C3 = :hv

c1.c2.c3 |

_ | _ _ |
o lialplipbpliplnd ey

16

1. Start at the first or last leaf page of the index and perform index screening
going forward or backward using sequential prefetch, applying all
nonmatching predicates to leaf pages

2. Follow qualifying row-ids to retrieve qualifying data pages, apply remaining
Stage 1 predicates and then remaining Stage 2 predicates

Note: A nonmatching index scan is chosen when the column located in the first
position of the index is not referenced by an indexable predicate but
remaining index column(s) are.

Tuning SQL SQL — Sheryl M. Larsen, Inc.

16

IN(list) Index Access

WHERE C1 IN (‘K’, ‘S’, ‘T’)
AND C2> 99

AND C3 = :hv

=
4880 & | &

Y'Y ¥
-

1. Start at the root page of the index and probe through the nonleaf page to the
leaf page, applying one IN(list) value filter plus all matching predicates,
perform index screening, applying all nonmatching predicates to leaf pages,
Follow qualifying row-ids to retrieve qualifying data pages, apply remaining
Stage 1 predicates and then remaining Stage 2 predicates

2. Repeat Step 1 for the next value in the IN(list)

3. Repeat Step 1 for the next value in the IN(list)

Note: This is essentially multiple Matching Index Accesses done sequentially.
This access path is beneficial when qualifying values are spread out. The
more spread out the qualifying entries are, the higher the benefit. This access
path can be used on the inner or outer table of most join methods.

Tuning SQL SQL — Sheryl M. Larsen, Inc.

17

IN(list) Index Access -Parallel

WHERE C1 IN (‘K’, ‘S, ‘T’)
AND C2> 99
AND C3 = :hv

am a1 8

Y'Y ¥
-

1. Start at the root page of the index and probe through the nonleaf page to the
leaf page, applying one IN(list) value filter per concurrent probe plus all
matching predicates, perform index screening, applying all nonmatching
predicates to leaf pages, retrieve qualifying data pages, apply remaining
Stage 1 predicates and then remaining Stage 2 predicates

Note: This is essentially multiple Matching Index Accesses done concurrently.
This access path is beneficial when qualifying values are spread out. The
more spread out the qualifying entries are, the higher the benefit. This
access path can be used on the inner or outer table of most join methods.

Tuning SQL SQL — Sheryl M. Larsen, Inc.

18

List Prefetch

WHERE C1 > 50

AND C2 = :hv

T 1
MNondLeaf Page Non-Leaf Page
00 0000
r 1 T T 1
LestPage | LeatPage LestPage | | LeatPage || LeafPage
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

19

1. Start at the root page of the index and probe through the nonleaf page to the

leaf page, applying all matching predicates

Perform index screening, applying all nonmatching predicates to leaf pages

3. Place qualifying row-ids in the RID Pool and sort by page number to remove
duplicate pages

4. Use skip sequential prefetch (each I/O retrieves 32 noncontiguous qualifying
data pages) to retrieve data pages identified in Step 3, apply remaining Stage
1 predicates and then remaining Stage 2 predicates

N

Note: This access path is very beneficial when all the result rows are required
and the index is poorly clustered, due to the elimination of random I/O to
retrieve data pages. If a sort was performed in Step 3, an additional sort may
be required to satisfy an optional ORDER BY, GROUP BY or DISTINCT.

Tuning SQL SQL — Sheryl M. Larsen, Inc.

19

B own

No o

Multiple Index Access

20

Start at the root page of one index and probe through the non-leaf page to the leaf page,
applying all matching predicates for that index

Perform index screening, applying all nonmatching predicates to leaf pages

Place qualifying row-ids in the RID Pool and sort by page number to remove duplicate pages
Start at the root page of another index and probe through the nonleaf page to the leaf page,
applying all matching predicates for that index

Perform index screening, applying all nonmatching predicates to leaf pages

Place qualifying row-ids in the RID Pool and sort by page number to remove duplicate pages
For ORed predicates, combine the page numbers and remove duplicates (referred to Index
ORing). For ANDed predicates, intersect the page numbers and remove duplicates (referred
to Index ANDIng).

Use skip sequential prefetch (each 1/O retrieves 32 noncontiguous qualifying data pages) to
retrieve data pages identified in Step 7, apply remaining Stage 1 predicates and then
remaining Stage 2 predicates

Note: This access path is very beneficial when all the result rows are required and the index
is poorly clustered, due to the elimination of random 1/O to retrieve data pages. An additional
sort may be required to satisfy an optional ORDER BY, GROUP BY or DISTINCT.

Tuning SQL SQL — Sheryl M. Larsen, Inc.

20

Sparse Index Access

21

DB29

copyright 2017 BMC

1. Start at the first page of the table and scan using sequential prefetch or any
viable single table access method, applying Stage 1 predicates and then
remaining Stage 2 predicates

2. Create a Sparse Index, contains pointers to values in the filtered table work
file

3. Follow Sparse Index pointers to work file to retrieve rows

Note: This access path can be used for inner tables in Nested Loop Join,
materialized table expressions, views, global temporary tables and small
tables participating in Star Join - Cartesian.

Tuning SQL SQL — Sheryl M. Larsen, Inc. 21

Limited Partition Scan
Using Clustered Partitioning Index

22 WHERE C1 IN (‘K’, ‘S’, ‘T’)
AND C2 > 99

AND C3 = :hv

Partitioning Index -
Clusiered

copyright 2017 BMC

0. At optimization time, determine the target partitions using matching predicates
without host variables or parameter markers. If REOPT options are used,
target partitions will be determined at run time when host variables or
parameter marker values are known

1. Start at the root page of each target partition and probe through the nonleaf
page to the leaf page, applying all matching predicates

2. Perform index screening on each target, applying all nonmatching predicates
to leaf pages

3. Follow qualifying row-ids to retrieve qualifying data pages, apply remaining
Stage 1 predicates and then remaining Stage 2 predicates

Note: There will not be any random I/O to the data pages within each target
partition

Tuning SQL SQL — Sheryl M. Larsen, Inc.

22

Scan for Last Name
Using Nonclustered Partitioning Index

23 Pariitioning Index -

Nonclustered
7 = WHERE TOKEN_NR BETWEEN ?

AND ? AND TICKET_PREFIX = ‘A’
AND LAST_NM LIKE ‘LAR%’

q
e L e
a B a

copyright 2017 BMC

0. At optimization time, determine the target partitions using matching predicates
without host variables or parameter markers. If REOPT options are used,
target partitions will be determined at run time when host variables or
parameter marker values are known

1. Start at the root page of each target partition and probe through the nonleaf
page to the leaf page, applying all matching predicates

2. Perform index screening on each target, applying all nonmatching predicates
to leaf pages

3. Follow qualifying row-ids to retrieve qualifying data pages, apply remaining
Stage 1 predicates and then remaining Stage 2 predicates

Note: There will be random 1I/O to the data pages within each target partition.

Tuning SQL SQL — Sheryl M. Larsen, Inc.

23

Limited Partition Scan Using DPSI

Sy WHERE TOKEN_NR
Partitioning by TOKEN_NR BETWEEN 2 AND ?

AND LAST_NM LIKE ‘%LAR

DPS| = Data Pariitionad Szcondary Indsx

24

0. At optimization time, determine the target partitions using predicates matching
the partitioning index without host variables or parameter markers. If REOPT
options are used, target partitions will be determined at run time when host
variables or parameter marker values are known

1. Start at the root page of each target partition of the DPSI index and probe
through the nonleaf page to the leaf page, applying all matching predicates

2. Perform index screening on each target, applying all nonmatching predicates
to leaf pages

3. Follow qualifying row-ids to retrieve qualifying data pages, apply remaining
Stage 1 predicates and then remaining Stage 2 predicates

Note: There will not be any random I/O to the data pages within each target
partition

Tuning SQL SQL — Sheryl M. Larsen, Inc. 24

Variations of Table Access

25 +All can be parallel Segmented

Partitioned

Limited Partitioned

+|f not enough room in

. In Memory Data Cache
memory, at run time create

sparse index instead

copyright 2017 BMC

Tuning SQL SQL — Sheryl M. Larsen, Inc.

Table Scan

WHERE C1 BETWEEN

:lowest AND :highest

26

a

copyright 2017 BMC

1. Start at the first data page of the table and perform data screening going
forward using sequential prefetch, applying all Stage 1 predicates and then
remaining Stage 2 predicates

Tuning SQL SQL — Sheryl M. Larsen, Inc.

26

Partitioned Table Scan

27

WHERE C1 BETWEEN
:lowest AND :highest

‘h@@@@@@

© copyright 2017 BMC

. At optimization time, determine the target partitions using predicates matching
the partitioning index without host variables or parameter markers. If REOPT

options are used, target partitions will be determined at run time when host
variables or parameter marker values are known

Start at the first data page of each target partition and perform data screening

going forward using sequential prefetch, applying all Stage 1 predicates and
then remaining Stage 2 predicates

Tuning SQL SQL — Sheryl M. Larsen, Inc.

27

Limited Partitioned Table Scan

WHERE C1IN (1, 3, 4, 16, 17, 18)

copyright 2017 BMC

1. Start at the first data page of each partition and perform data screening going
forward using sequential prefetch, applying all Stage 1 predicates and then
remaining Stage 2 predicates

Tuning SQL SQL — Sheryl M. Larsen, Inc.

28

29

Variations of Join Methods

+All choose outer table and

filter first Nested Loop
+All can be parallel (Star Hybrid Join Type C
CPU only) Hybrid Join Type N

Merge Scan Join

*Worry about join table Star Join — Cartesian

sequence instead of join Star Join — Pair Wise

method

copyright 2017 BMC

Tuning SQL SQL — Sheryl M. Larsen, Inc.

29

Nested Loop Join

WHERE
T1.0RDER >

- R I

222
AND
T1.ID = T2.ID Inner Index

AND ID.COLOR index
T2.COLOR IN a)

BLUE :
YELLOW — e Ty Jeee | |

GREEN

30

1. Access outer table using the most efficient single table access path for
applying all outer table filters, as soon as the first outer table qualifying row is
determined, add the join column values to the join predicates and merge with
inner table predicates

2. Apply matching index filters to root page of inner table index and probe
through nonleaf to leaf pages and perform index screening

3. Perform index screening, applying all nonmatching predicates to leaf pages,
follow qualifying row-ids to retrieve qualifying data pages, apply remaining
Stage 1 predicates and then remaining Stage 2 predicates

4. Place filtered outer row with joining filter inner row in the result, if LEFT JOIN,
keep all filtered outer rows and NULL missing filter inner row values

Note: Step 1 does not have to complete prior to starting the remaining steps.
This access path is optimal when only the first part of the result set is needed.

Tuning SQL SQL — Sheryl M. Larsen, Inc.

30

Hybrid Join — 1—Type N

I
u
"

31

1. Access outer table using the most efficient single table access path for
applying all outer table filters, a sort of these rows may be required to match
the inner table index sequence

2. Apply matching index filters to root page of inner table index and probe
through nonleaf to leaf pages and perform index screening

3. Place qualifying row-ids in the RID Pool and attach to filtered outer row to

form an intermediate table

Sort row-ids and intermediate table by page number

Use skip sequential prefetch (each 1/O retrieves 32 noncontiguous qualifying

data pages) to retrieve inner table data pages, apply remaining Stage 1

predicates and then remaining Stage 2 predicates

6. Replace inner table row-ids in intermediate table with qualifying inner table
rows to form result rows

ok

Note: This access path is very beneficial when all the result rows are required
and the index is poorly clustered, due to the elimination of random 1/O to
retrieve data pages. An additional sort may be required to satisfy an optional
ORDER BY, GROUP BY or DISTINCT.

Tuning SQL SQL — Sheryl M. Larsen, Inc. 31

Hybrid Join — Type C

rbmua awl M.um- .»L.-w p

a va aﬂ’w LuvPay. ‘ wpm ! Mm udm I
oooooooooooooooooooooooooooooooooooo

nﬂ%.

a

32

. Access outer table using the most efficient single table access path for
applying all outer table filters, a sort of these rows may be required to match
the inner table index sequence

. Apply matching index filters to root page of inner table index and probe
through nonleaf to leaf pages and perform index screening

. Gather first set of page numbers and use skip sequential prefetch (each I/O
retrieves 32 noncontiguous qualifying data pages) to retrieve inner table data
pages, apply remaining Stage 1 predicates and then remaining Stage 2
predicates

. Place filtered outer row with joining filter inner row in the result

Note: This access path is optimal when only the first part of the result set is
needed and the sort for the filtered outer table is not extensive.

Tuning SQL SQL — Sheryl M. Larsen, Inc.

32

WHERE
T1.C1=T2.CAAND

Merge Scan Join T1.62= T2.CB AND

33

T1.C3=T2.CC

e ————
527 |

(== F ™ R =~ |

© copyright 2017 BMC

how

Access outer table using the most efficient single table access path for
applying all outer table filters, a sort of these rows may be required to match
the join column(s) sequence

Access inner table using the most efficient single table access path for
applying all inner table filters, a sort of these rows may be required to match
the join column(s) sequence

Perform match-merge check to join outer and inner table rows

Place filtered outer row with joining filter inner row in the result, if FULL JOIN
keep all filtered outer rows and NULL missing filter inner row values, and
keep all filtered inner rows and NULL missing filter outer row values

Note: This access path is optimal when the whole result set is needed and
the sort for the filtered outer and inner tables are not needed or extensive.

Tuning SQL SQL — Sheryl M. Larsen, Inc.

33

nsion Tables

w
3
o
S
3
o

Star Join - Cartesian
I LJ

a Bg/ﬁble Index

{4&44&4@44
a =

34

1. Scan small/dimension tables, merge snowflakes, applying filters, sort
filtered dimension tables, and create sparse index for each (execution time
may promote this and place data in-memory instead of creating sparse
index)

2. Emulate building a gigantic Cartesian product using entries from the
small/dimension data pointed to by the sparse indexes (or in-memory)
avoiding entry combinations when possible

3. Probe the big/fact table index once for every calculated combination of
small/dimension table join values

4. Perform index screening, applying all nonmatching predicates to leaf pages

5. Place qualifying big/fact table values with qualifying small/dimension table
values and in the result

6. Use sophisticated feedback loop technology to omit unnecessary big/fact
table index probes by passing back the next possible qualifying entry
combination

Note: This access path is optimal when there is high selectivity on the

big/fact table index and good selectivity on the first few dimensions
accessed.

Tuning SQL SQL — Sheryl M. Larsen, Inc. 34

Pair-Wise Star Join

35

o0k w

~

Scan the most filtering small/dimension tables, merge snowflakes, applying filters, and create
sparse index for each (execution time may promote this and place data in-memory instead of
creating sparse index)

Join filtered dimension to big/fact table applying matching index filters in parallel to root page
of big/fact table join column indexes, probe through nonleaf to leaf pages and perform index
screening

Sort row-ids in parallel

Perform dynamic index row-id ANDing

Gather the first 32 noncontiguous qualifying data pages in RID-list

Use skip sequential prefetch to retrieve 32 big/fact data pages identified in Step 4 each time,
apply remaining Stage 1 predicates and then remaining Stage 2 predicates

Use filtered big/fact table rows

If SELECT columns are needed, join back to small/dimension tables sequentially through
sparse indexes (execution time may promote to in-memory) if materialized in Step 1,
otherwise scan the dimension

Place big/fact table join rows with small/dimension rows in the result

Note: This access path requires one single column index per join column on fact table, is
optimal when there is high selectivity on the big/fact table index and unpredictable selectivity
on the dimensions accessed. This access path is also beneficial when there is no optimal
multi-column index on the fact table for Star Join — Cartesian.

Tuning SQL — Sheryl M. Larsen, Inc.

35

Read Direct Access

1. Create table with ROWID
type column (DIRECT_ID)

2. SELECT DIRECT_ID
INTO :direct-id

FROM TAB12 | N -
WHERE UKEY = ‘AMX’ Q
3. UPDATE TAB12

WHERE)~
DIRECT_ID = :direct-id

AMX DIRECT_ID

DIRECT _ID

36

1. Create/alter table with ROWID type column (DIRECT _ID)
2. SELECT DIRECT_ID

INTO :direct-id

FROM TAB12

WHERE UKEY = ‘AMX’
3. UPDATE TAB12

WHERE

DIRECT_ID = :direct-id

Note: This access path is optimal when there is high volume access to LOBs,
CLOBs and DBCLOBs or high volume updates to columns.

Tuning SQL SQL — Sheryl M. Larsen, Inc.

WFETCH
100

IIXSCAN *ICUST_CUSTOMER
1.00 GOSALESCT

WIBSCAN * *SQL120927102612£00
0.004 SYSIBM

(+)CUST_ORDER_HEADER
GOSALESCT ‘

*IGCENROW *SCUST_ORDER_HEADER
SYSBY ‘cosatzsct

The larger the graph and the more rows involved,
the more costly it is.

37

Tuning SQL

*FIND ALL Expensive Queries

e e N
PROGNAME PROCSU
R e P
EXPNPROG

EXPNPROG

ONESECPG

SUBSECPG

CHEEPPRG 64

FREEPROG

copyright 2017 BMC

Tuning SQL — Sheryl M. Larsen, Inc.

38

PROCSU is

Too Expensive to Calculate!

2,147,483 ,647

39

Tuning SQL — Sheryl M. Larsen, Inc.

39

Tuning Techniques to Apply When Necessary

Learn Traditional Tuning Techniques
OPTIMIZE FOR n ROWS
No Ops
Fake Filtering
ON1=1
Index & MQT Design

Experiment with Extrerne Tuning Techniques
DISTINCT Table Expressions
Odd/old Techniques
Anti-Joins
Manual Query Rewrite (X2QBOpt) covered in Extreme

40

Tuning SQL SQL — Sheryl M. Larsen, Inc.

40

OPTIMIZE FOR n ROWS
FETCH FIRST n ROWS

*Both clauses influence the Optimizer

To encourage index access and nested loop join

To discourage list prefetch, sequential prefetch, and
access paths with Rid processing

Use FETCH n = total rows required for set

Use OPTIMIZE n = number of rows to send across network

for distributed applications
Works at the statement level

41

Tuning SQL SQL — Sheryl M. Larsen, Inc.

41

Fetch First Example
Quenyizi|

SELECT S.QTY_SOLD

; S.ITEM_NO

, S.JITEM_NAME
FROM SALE S
WHERE S.ITEM_NO > :hv
ORDER BY ITEM_NO

Crapy i e

SELECT S.QTY_SOLD, S.ITEM_NO
, S.JITEM_NAME

FROM SALE S

WHERE S.ITEM_NO > :hv

ORDER BY ITEM_NO

FETCH FIRST 22 ROWS ONLY

Optimizer choose List Prefetch Index
Access + sort for ORDER BY for 50,000
rows

All qualifyins rows processed
(materialized) before first row
returned = .81 sec

<.1sec response time required

Optimizer now chooses Matching Index Access
(first probe .004 sec)

No materialization

Cursor closed after 22 items displayed (22 * .0008
repetitive access)

004 +.017 =.021 sec

© copyright 2017 BMC

Tuning SQL SQL — Sheryl M. Larsen, Inc.

42

No Operation (No Op)

+ +0, CONCAT ‘ “ also -0, *1, /1

— Place no op next to predicate
— Use as many as needed

— Discourages index access, however, preserves Stage 1
— Can Alter table join sequence

— Canfine tune a given access path @

— Can request a table scan e

— Works at the predicate level
Does not Benefit
DB2 on Linux,
UNIX or

Windows

43

Tuning SQL SQL — Sheryl M. Larsen, Inc.

43

44

SALES_ID.MNGR.REGION Index

SELECT S.QTY_SOLD
¢ S.ITEM_NO
; S.ITEM_NAME
FROM SALE S
WHERE S.SALES_ID > 44
AND S.MNGR = :hv-mpgr
AND S.REGION BETWEEN
:hvlo AND :hvhi
ORDER BY S.REGION

FROM SALE S

WHERE S.SALES_1ID > 44
AND S.MNGR = :hv-mngr
AND S.REGION BETWEEN

ORDER BY R.REGION

:hvlo AND :hvhi CONCAT **

No Op Example concaT * *

MNGR Index REGION Index

Optimizer chooses Multiple [ndex
Access

The table contains 100,000 rows
and there are only 6 regions

Region range qualifies 2/3 of table
<.Isec response time required

No Op allows Multiple Index
Access to continue on first 2
indexes

Two Matching index accesses, two
small Rid sorts, & Rid intersection

copyright 2017 BMC

Tuning SQL SQL — Sheryl M. Larsen, Inc.

44

No Op Example - Scan

45

SALES_ID.MNGR.REGION Index

MNGR Index REGION Index

SELECT S.QTY_SOLD

; S.ITEM_NO

, S.JITEM_NAME
FROM SALE S

WHERE S.SALES_ID > 44 +0

AND S.REGION BETWEEN
:hvlio AND :hvhi CONCAT "
ORDER BY S.REGION
FOR FETCH ONLY
WITH UR

AND S.MNGR = :hv-mngr CONCAT

« Ifyou know the predicates do very
little filtering, force a table scan

* Usea No Op on every predicate
This forces a table scan

FOR FETCH ONLY encourages
parallelism

« WITH UR for read only tables to
reduce CPU

-
*. ®

copyrig

Should this be
Documented?

Tuning SQL SQL — Sheryl M. Larsen, Inc.

45

Fake Filtering =

*Fake Predicates .

To encourage index access

To alter table join sequence when nothing else works
Works by decreasing filter factor on a certain table
The filtering is fake and negligible cost

Not effective for dynamic queries if the filter contains
:host variables

46

Tuning SQL SQL — Sheryl M. Larsen, Inc.

46

47

SELECT B.BID, D.DID, S.SID,
,D.DESC,
; S.DESC
FROM BONDS B
, DENOM D, SERIAL S
WHERE B.BID BETWEEN
:hvio AND :hvhi
AND B.DID = D.DID
AND B.SID = S.SID
ORDER BY B.BID

Fake Filtering Example

Nested
v Loop

naex

%
S.SID Index Joins
20 rows

B.BID Index
6 billion rows

Large report query with average of
400,000 row range of BID table

*Need to start nested loop with big table
*Tools required

copyright 2017 BMC

Tuning SQL SQL — Sheryl M. Larsen, Inc.

47

Fake Filtering Example

48

SELECT B.BID, D.DID, S.SID B.BID Index

D.DESC, 6 billion rows | 1Nested

, S.DESC Loop
FROM BONDS B D.DID Index

, DENOM D, SERIAL S L l2rows ¥
WHERE B.BID BETWEEN S.SID Index

thvlo AND :hvhi 20 rows

AND B.BID = D.DID
AND B.SID = S.SID
AND B.COL2 >=gligy 5
AND B.COL3 ==glpQoL 3
AND B.COL4 >=B|C0OL4
AND B.COLS5 >=BIGOL5
AND B.COL6 ==BICOL6

*Keep adding filters until table join
sequence changes
+Start with index columns

*To preserve index-only

ORDER BY B.BID AN

For Dynamic

> access

copyright 2017 BMC

Joins

Tuning SQL SQL — Sheryl M. Larsen, Inc.

48

ON1=1
*ON 1=1
— Tofill in a required join field
— To request a star join

— When table ratios are under
the system specified number
(starts at 1:25)

— Can benefit when large table
has high selectivity

49

Tuning SQL SQL — Sheryl M. Larsen, Inc.

49

Experiment with Extreme Techniques

After Traditional Techniques Fail

7K
{/?

50

Tuning SQL SQL — Sheryl M. Larsen, Inc.

50

DISTINCT Table Expressions

¢ Table expressions with DISTINCT

* FROM (SELECT DISTINCT COL1 FROM T1) AS STEP1JOIN T2
ON ..JOINT3 ON ...

— Used for forcing creation of logical set of data
* No physical materialization if an index satisfies DISTINCT

— Can encourage sequential detection
— Can encourage a Merge Scan join

STEP1 Logical
- Buffer Pool

e

STEP1 Physical

Tuning SQL SQL — Sheryl M. Larsen, Inc.

51

DISTINCT Table Expressions Example

52 ¢ SELECT Columns
FROM TABX, TABY,
(SELECT DISTINCT COL1, COL2
FROM BIG_TABLE Z
WHERE local conditions) AS BIGZ
WHERE join conditions

¢ Optimizer is forced to analyze the table expression prior to
joining TABX & TABY

copyright 2017 BMC

BIG_TABLE is access first
Possibly results in materialized and sorted BIGZ
workfile if DISTINCT cannot be satisfied using an
index

Great for tuning dynamic queries!

Tuning SQL SQL — Sheryl M. Larsen, Inc.

52

Typical Join Problem

SELECT COL1, COL2
53 FROM ADDR, NAME, TAB3, TAB4, TAB5, TAB6, TAB7 WHERE
join conditions

AND|TAB6.CODE = :hv

Cardinality 1
*Result is only 1,000 rows

+ADDR and NAME first two tables in join
+Index scan on TABG6 table
— Not good because zero filter

copyright 2017 BMC

Tuning SQL SQL — Sheryl M. Larsen, Inc.

53

Tuning Technique
SELECT COL1, COL2...... joined last
o FROM (ADDR, NAME, /
(SELECT DISTINCT columns
FROM TAB3, TAB4, TAB5, TAB6, TAB7

WHERE join conditions

AND (TAB6.CODE = :hv
AS TEMP

WHERE join conditions

Gets rid of Index Scan

copyright 2017 BMC

Tuning SQL SQL — Sheryl M. Larsen, Inc.

54

N SELECT Columns

i-loi TABY Y
Anti-Join FrowtasYY
ON X.COL1 = Y.COL1
55 WHERE X.COL1 IS NULL
|
SELECT Columns TABX .
FROM TABX X Exceptions Exceptions
WHERE NOT EXISTS
(SELECT *
FROM TABY Y)
WHERE X.COL1 = Y.COL1) Inner Join
SELECT Columns
FROM TABX X, TABY ¥
WHERE X.COL1 = Y.COL1

copyright 2017 BMC

Tuning SQL SQL — Sheryl M. Larsen, Inc.

55

Anti-Join
SELECT Columns
5 FROM TABX X

WHERE NOT EXISTS
(SELECT
FROM TABY Y
WHERE X.COL1 = V!

L1)

s not Benefit
LUW

Stage 2 when correlated

TABX
Exceptions

Indexable Stage 1

SELECT Columns

FROM TABX X

LEFT JOIN TABY Y

ON X.COL1 = Y.COL1

Qo e ° WHERE Y.COL1 IS NULL

-

J

copyright 2017 BMC

Tuning SQL SQL — Sheryl M. Larsen, Inc.

56

SQL Tuning Confidence Level

L7 100%

copyright 2017 BMC

57

Sheryl Larsen

Sr. DB2 Product Specialist
President, Chicago DB2 Users Group
IBM Z Champion

(224) 343-5427

sheryl larsen@bmc.com

58

