
1

Description:

This class is all about increasing the attendee’s ability to identify and fix access

path problems

Skills Taught:

•Learn how DB2 executes index, table and join access paths

•Learn when each access path is optimal and non-optimal

•Learn recommended SQL tuning techniques for changing the DB2 optimizer’s

mind

•Learn how to identify potential access path problems

Tuning SQL – Sheryl M. Larsen, Inc. 2

Tuning SQL 3

For static SQL ,DB2 will use the stored access path in the Directory.

REOPT (ONCE), REOPT(AUTO) * DB2 9

For dynamic SQL ,DB2 will check the Dynamic Statement Cache for an exact

match of the statement.

If found, the cached associated access path will be used.

REOPT(AUTO) *DB2 9

For dynamic SQL, DB2 will check the Dynamic Statement Cache for an exact

match of the statement.

If found, the cached associated access path will be used.

If found but the parameter marker values are not significantly different, the

cached associated access path will be used.

If not found, the Optimizer costs out a new access path for use and stores it in

the cache with the new statement

REOPT(Always)

For each execution, the Optimizer costs out a new access path for use ,

Tuning SQL – Sheryl M. Larsen, Inc. 4

Stage 1 filtering is done first against the 4K pages brought into the

Buffer Pool.

Stage 2 only examines the rows that qualify after Stage 1 filtering,

however, the entire row or index entry is still on the 4k page sitting in the

Buffer Pool.

Once Stage 2 is complete, data transformations requested on the

SELECT clause are performed prior to returning one result value at a

time to the calling program.

Query response time is dependent on:

•The number of I/O’s to pull data and/or index pages in the Buffer Pool

•The number of rows left after Stage 1 filtering

•The number of rows left after Stage 2 filtering

•The sequence the rows are in the Buffer Pool

•The amount of translations preformed on the result values

The less rows requested, the less columns requested, the less

transformations, the faster the query goes.

Tuning SQL – Sheryl M. Larsen, Inc. 5

1. Indexable Stage 1 Probe - Only 28 for DB2 9, can be applied at this point. The ones
that will be applied are dependent on which index was chosen, the conditions on
the columns belonging in the index, and the sequence of those columns. If the first
column of the index is used in a “=“ predicate, the column is used to navigate the
tree along with the next column (2 matching). If the next column is used in a “=“
predicate, the column is used to navigate the tree along with the previous two
columns (3 matching). If the next column is not an “=“ predicate, the matching
stops with this condition (4 matching) unless it is nonindexable or Stage 2 (3
matching). If the first column is not and “=“ predicate, only the first column is used
to navigate the tree (1 matching). The number of matching columns usually = one
more than the last matching condition. Data types are required to match until V8.

2. Stage 1 Index Filtering - If there is no predicate involving the first column of the index,
tree navigation is not allowed (0 matching). Any Stage 1 predicate (all 40) can be
applied on the leaf page. This point of filtering is called index screening. Stage 2
conditions can also be applied after the Stage 1 conditions are applied (if this is
index only access and the Stage 2 column is included in the index - like COL9 above).
Data types are required to match until V8.

3. Stage 1 Data Filtering - Any Stage 1 condition that has not been applied in the index
entries is applied when the data page is accessed (because all columns live there).
Data types are required to match until V8.

4. Stage 2 Data Filtering - Any condition that is not Stage 1 will be applied at this point
(an infinite number of possible predicates). This filtering is still better than program
filtering which occurs after each element on the result row is transferred to the
calling program (one at a time). Any data type mismatches were filtered here until
V8.

Tuning SQL – Sheryl M. Larsen, Inc. 6

Tuning SQL – Sheryl M. Larsen, Inc. 7

1. Examine Program logic – check for program filtering and joining. Move work

into the query.

2. Examine FROM clause – order of tables insignificant unless > 9 table joins.

List preferred join sequence for this and OUTER JOINs

3. Verify Join conditions – make sure every table is hooked up correctly to avoid

cartesian joins

4. Promote Stage 2’s/Residuals and Stage 1’s if possible – promotions can

change access paths

5. Verify data type matches – mismatched numeric and date/time will cause

delays in filtering and alter the access path

6. Prune SELECT lists – remove columns with values determined to be static by

WHERE clause filtering. Remove columns used in the ORDER BY or

GROUP BY sequencing but not needed for the display.

7. Verify local filtering sequence – If host variables are used, add parenthesis to

override the predetermined filtering sequence when necessary. This reduces

the CPU required to disqualify rows

8. Analyze Access Paths – Only check the access path of the FINAL query, after

query rewrite, bound with production statistics in a subsystem that resembles

the production thresholds as closely as possible.

9. Tune if necessary – A topic for today!

Tuning SQL SQL – Sheryl M. Larsen, Inc. 8

Tuning SQL SQL – Sheryl M. Larsen, Inc. 9

Tuning SQL – Sheryl M. Larsen, Inc. 10

Tuning SQL SQL – Sheryl M. Larsen, Inc. 11

Tuning SQL SQL – Sheryl M. Larsen, Inc. 12

Tuning SQL SQL – Sheryl M. Larsen, Inc. 13

RID = Row ID, a single pointer/address to a single row

BID = Block ID, a single pointer/address to a block of rows

Tuning SQL SQL – Sheryl M. Larsen, Inc. 14

1. For MIN or MAX on the first column of the index, retrieve the first or last leaf

page of the index only

2. For MIN or MAX on columns past the first column of the index, and equal

predicates on previous index columns, start at the root page and probe

through the nonleaf page to the leaf page, applying all matching predicates

3. Proceed forward or backward on the leaf pages to satisfy the MIN or MAX

Note: All indexes ALLOW REVERSE SCANS for One Fetch, ORDER BY,

GROUP BY, and DISTINCT.

Tuning SQL SQL – Sheryl M. Larsen, Inc. 15

1. Start at the root page of the index and probe through the nonleaf page to the

leaf page, applying all matching predicates

2. Perform index screening, applying all nonmatching predicates to leaf pages

3. Follow qualifying row-ids to retrieve qualifying data pages, apply remaining

Stage 1 predicates and then remaining Stage 2 predicates

Note: A predicate becomes matching when a column is located in the first

position of the index and is referenced by an indexable predicate. If the

column is not in the first position of the index, the preceding columns are

included in the matching when they have consecutive = predicates. The total

number of matching columns includes all consecutive = predicate columns, in

the order of the index columns, plus one past the last = predicate. The higher

the percent matching, i.e. 4 out of 5 columns are 80% matching, the closer

the probe will be to the first qualifying row.

Tuning SQL SQL – Sheryl M. Larsen, Inc. 16

1. Start at the first or last leaf page of the index and perform index screening

going forward or backward using sequential prefetch, applying all

nonmatching predicates to leaf pages

2. Follow qualifying row-ids to retrieve qualifying data pages, apply remaining

Stage 1 predicates and then remaining Stage 2 predicates

Note: A nonmatching index scan is chosen when the column located in the first

position of the index is not referenced by an indexable predicate but

remaining index column(s) are.

Tuning SQL SQL – Sheryl M. Larsen, Inc. 17

1. Start at the root page of the index and probe through the nonleaf page to the

leaf page, applying one IN(list) value filter plus all matching predicates,

perform index screening, applying all nonmatching predicates to leaf pages,

Follow qualifying row-ids to retrieve qualifying data pages, apply remaining

Stage 1 predicates and then remaining Stage 2 predicates

2. Repeat Step 1 for the next value in the IN(list)

3. Repeat Step 1 for the next value in the IN(list)

Note: This is essentially multiple Matching Index Accesses done sequentially.

This access path is beneficial when qualifying values are spread out. The

more spread out the qualifying entries are, the higher the benefit. This access

path can be used on the inner or outer table of most join methods.

Tuning SQL SQL – Sheryl M. Larsen, Inc. 18

1. Start at the root page of the index and probe through the nonleaf page to the

leaf page, applying one IN(list) value filter per concurrent probe plus all

matching predicates, perform index screening, applying all nonmatching

predicates to leaf pages, retrieve qualifying data pages, apply remaining

Stage 1 predicates and then remaining Stage 2 predicates

Note: This is essentially multiple Matching Index Accesses done concurrently.

This access path is beneficial when qualifying values are spread out. The

more spread out the qualifying entries are, the higher the benefit. This

access path can be used on the inner or outer table of most join methods.

Tuning SQL SQL – Sheryl M. Larsen, Inc. 19

1. Start at the root page of the index and probe through the nonleaf page to the

leaf page, applying all matching predicates

2. Perform index screening, applying all nonmatching predicates to leaf pages

3. Place qualifying row-ids in the RID Pool and sort by page number to remove

duplicate pages

4. Use skip sequential prefetch (each I/O retrieves 32 noncontiguous qualifying

data pages) to retrieve data pages identified in Step 3, apply remaining Stage

1 predicates and then remaining Stage 2 predicates

Note: This access path is very beneficial when all the result rows are required

and the index is poorly clustered, due to the elimination of random I/O to

retrieve data pages. If a sort was performed in Step 3, an additional sort may

be required to satisfy an optional ORDER BY, GROUP BY or DISTINCT.

Tuning SQL SQL – Sheryl M. Larsen, Inc. 20

1. Start at the root page of one index and probe through the non-leaf page to the leaf page,

applying all matching predicates for that index

2. Perform index screening, applying all nonmatching predicates to leaf pages

3. Place qualifying row-ids in the RID Pool and sort by page number to remove duplicate pages

4. Start at the root page of another index and probe through the nonleaf page to the leaf page,

applying all matching predicates for that index

5. Perform index screening, applying all nonmatching predicates to leaf pages

6. Place qualifying row-ids in the RID Pool and sort by page number to remove duplicate pages

7. For ORed predicates, combine the page numbers and remove duplicates (referred to Index

ORing). For ANDed predicates, intersect the page numbers and remove duplicates (referred

to Index ANDing).

8. Use skip sequential prefetch (each I/O retrieves 32 noncontiguous qualifying data pages) to

retrieve data pages identified in Step 7, apply remaining Stage 1 predicates and then

remaining Stage 2 predicates

Note: This access path is very beneficial when all the result rows are required and the index

is poorly clustered, due to the elimination of random I/O to retrieve data pages. An additional

sort may be required to satisfy an optional ORDER BY, GROUP BY or DISTINCT.

Tuning SQL SQL – Sheryl M. Larsen, Inc. 21

1. Start at the first page of the table and scan using sequential prefetch or any

viable single table access method, applying Stage 1 predicates and then

remaining Stage 2 predicates

2. Create a Sparse Index, contains pointers to values in the filtered table work

file

3. Follow Sparse Index pointers to work file to retrieve rows

Note: This access path can be used for inner tables in Nested Loop Join,

materialized table expressions, views, global temporary tables and small

tables participating in Star Join - Cartesian.

Tuning SQL SQL – Sheryl M. Larsen, Inc. 22

0. At optimization time, determine the target partitions using matching predicates

without host variables or parameter markers. If REOPT options are used,

target partitions will be determined at run time when host variables or

parameter marker values are known

1. Start at the root page of each target partition and probe through the nonleaf

page to the leaf page, applying all matching predicates

2. Perform index screening on each target, applying all nonmatching predicates

to leaf pages

3. Follow qualifying row-ids to retrieve qualifying data pages, apply remaining

Stage 1 predicates and then remaining Stage 2 predicates

Note: There will not be any random I/O to the data pages within each target

partition

Tuning SQL SQL – Sheryl M. Larsen, Inc. 23

0. At optimization time, determine the target partitions using matching predicates

without host variables or parameter markers. If REOPT options are used,

target partitions will be determined at run time when host variables or

parameter marker values are known

1. Start at the root page of each target partition and probe through the nonleaf

page to the leaf page, applying all matching predicates

2. Perform index screening on each target, applying all nonmatching predicates

to leaf pages

3. Follow qualifying row-ids to retrieve qualifying data pages, apply remaining

Stage 1 predicates and then remaining Stage 2 predicates

Note: There will be random I/O to the data pages within each target partition.

Tuning SQL SQL – Sheryl M. Larsen, Inc. 24

0. At optimization time, determine the target partitions using predicates matching

the partitioning index without host variables or parameter markers. If REOPT

options are used, target partitions will be determined at run time when host

variables or parameter marker values are known

1. Start at the root page of each target partition of the DPSI index and probe

through the nonleaf page to the leaf page, applying all matching predicates

2. Perform index screening on each target, applying all nonmatching predicates

to leaf pages

3. Follow qualifying row-ids to retrieve qualifying data pages, apply remaining

Stage 1 predicates and then remaining Stage 2 predicates

Note: There will not be any random I/O to the data pages within each target

partition

Tuning SQL SQL – Sheryl M. Larsen, Inc. 25

Tuning SQL SQL – Sheryl M. Larsen, Inc. 26

1. Start at the first data page of the table and perform data screening going

forward using sequential prefetch, applying all Stage 1 predicates and then

remaining Stage 2 predicates

Tuning SQL SQL – Sheryl M. Larsen, Inc. 27

0. At optimization time, determine the target partitions using predicates matching

the partitioning index without host variables or parameter markers. If REOPT

options are used, target partitions will be determined at run time when host

variables or parameter marker values are known

1. Start at the first data page of each target partition and perform data screening

going forward using sequential prefetch, applying all Stage 1 predicates and

then remaining Stage 2 predicates

Tuning SQL SQL – Sheryl M. Larsen, Inc. 28

1. Start at the first data page of each partition and perform data screening going

forward using sequential prefetch, applying all Stage 1 predicates and then

remaining Stage 2 predicates

Tuning SQL SQL – Sheryl M. Larsen, Inc. 29

Tuning SQL SQL – Sheryl M. Larsen, Inc. 30

1. Access outer table using the most efficient single table access path for

applying all outer table filters, as soon as the first outer table qualifying row is

determined, add the join column values to the join predicates and merge with

inner table predicates

2. Apply matching index filters to root page of inner table index and probe

through nonleaf to leaf pages and perform index screening

3. Perform index screening, applying all nonmatching predicates to leaf pages,

follow qualifying row-ids to retrieve qualifying data pages, apply remaining

Stage 1 predicates and then remaining Stage 2 predicates

4. Place filtered outer row with joining filter inner row in the result, if LEFT JOIN,

keep all filtered outer rows and NULL missing filter inner row values

Note: Step 1 does not have to complete prior to starting the remaining steps.

This access path is optimal when only the first part of the result set is needed.

Tuning SQL SQL – Sheryl M. Larsen, Inc. 31

1. Access outer table using the most efficient single table access path for

applying all outer table filters, a sort of these rows may be required to match

the inner table index sequence

2. Apply matching index filters to root page of inner table index and probe

through nonleaf to leaf pages and perform index screening

3. Place qualifying row-ids in the RID Pool and attach to filtered outer row to

form an intermediate table

4. Sort row-ids and intermediate table by page number

5. Use skip sequential prefetch (each I/O retrieves 32 noncontiguous qualifying

data pages) to retrieve inner table data pages, apply remaining Stage 1

predicates and then remaining Stage 2 predicates

6. Replace inner table row-ids in intermediate table with qualifying inner table

rows to form result rows

Note: This access path is very beneficial when all the result rows are required

and the index is poorly clustered, due to the elimination of random I/O to

retrieve data pages. An additional sort may be required to satisfy an optional

ORDER BY, GROUP BY or DISTINCT.

Tuning SQL SQL – Sheryl M. Larsen, Inc. 32

1. Access outer table using the most efficient single table access path for

applying all outer table filters, a sort of these rows may be required to match

the inner table index sequence

2. Apply matching index filters to root page of inner table index and probe

through nonleaf to leaf pages and perform index screening

3. Gather first set of page numbers and use skip sequential prefetch (each I/O

retrieves 32 noncontiguous qualifying data pages) to retrieve inner table data

pages, apply remaining Stage 1 predicates and then remaining Stage 2

predicates

4. Place filtered outer row with joining filter inner row in the result

Note: This access path is optimal when only the first part of the result set is

needed and the sort for the filtered outer table is not extensive.

Tuning SQL SQL – Sheryl M. Larsen, Inc. 33

1. Access outer table using the most efficient single table access path for

applying all outer table filters, a sort of these rows may be required to match

the join column(s) sequence

2. Access inner table using the most efficient single table access path for

applying all inner table filters, a sort of these rows may be required to match

the join column(s) sequence

3. Perform match-merge check to join outer and inner table rows

4. Place filtered outer row with joining filter inner row in the result, if FULL JOIN

keep all filtered outer rows and NULL missing filter inner row values, and

keep all filtered inner rows and NULL missing filter outer row values

Note: This access path is optimal when the whole result set is needed and

the sort for the filtered outer and inner tables are not needed or extensive.

Tuning SQL SQL – Sheryl M. Larsen, Inc. 34

1. Scan small/dimension tables, merge snowflakes, applying filters, sort

filtered dimension tables, and create sparse index for each (execution time

may promote this and place data in-memory instead of creating sparse

index)

2. Emulate building a gigantic Cartesian product using entries from the

small/dimension data pointed to by the sparse indexes (or in-memory)

avoiding entry combinations when possible

3. Probe the big/fact table index once for every calculated combination of

small/dimension table join values

4. Perform index screening, applying all nonmatching predicates to leaf pages

5. Place qualifying big/fact table values with qualifying small/dimension table

values and in the result

6. Use sophisticated feedback loop technology to omit unnecessary big/fact

table index probes by passing back the next possible qualifying entry

combination

Note: This access path is optimal when there is high selectivity on the

big/fact table index and good selectivity on the first few dimensions

accessed.

Tuning SQL – Sheryl M. Larsen, Inc. 35

1. Scan the most filtering small/dimension tables, merge snowflakes, applying filters, and create

sparse index for each (execution time may promote this and place data in-memory instead of

creating sparse index)

2. Join filtered dimension to big/fact table applying matching index filters in parallel to root page

of big/fact table join column indexes, probe through nonleaf to leaf pages and perform index

screening

3. Sort row-ids in parallel

4. Perform dynamic index row-id ANDing

5. Gather the first 32 noncontiguous qualifying data pages in RID-list

6. Use skip sequential prefetch to retrieve 32 big/fact data pages identified in Step 4 each time,

apply remaining Stage 1 predicates and then remaining Stage 2 predicates

7. Use filtered big/fact table rows

8. If SELECT columns are needed, join back to small/dimension tables sequentially through

sparse indexes (execution time may promote to in-memory) if materialized in Step 1,

otherwise scan the dimension

9. Place big/fact table join rows with small/dimension rows in the result

Note: This access path requires one single column index per join column on fact table, is

optimal when there is high selectivity on the big/fact table index and unpredictable selectivity

on the dimensions accessed. This access path is also beneficial when there is no optimal

multi-column index on the fact table for Star Join – Cartesian.

Tuning SQL SQL – Sheryl M. Larsen, Inc. 36

1. Create/alter table with ROWID type column (DIRECT_ID)

2. SELECT DIRECT_ID

INTO :direct-id

FROM TAB12

WHERE UKEY = ‘AMX’

3. UPDATE TAB12

WHERE

 DIRECT_ID = :direct-id

Note: This access path is optimal when there is high volume access to LOBs,

CLOBs and DBCLOBs or high volume updates to columns.

37

Tuning SQL – Sheryl M. Larsen, Inc. 38

Tuning SQL – Sheryl M. Larsen, Inc. 39

Tuning SQL SQL – Sheryl M. Larsen, Inc. 40

Tuning SQL SQL – Sheryl M. Larsen, Inc. 41

Tuning SQL SQL – Sheryl M. Larsen, Inc. 42

Tuning SQL SQL – Sheryl M. Larsen, Inc. 43

Tuning SQL SQL – Sheryl M. Larsen, Inc. 44

Tuning SQL SQL – Sheryl M. Larsen, Inc. 45

Tuning SQL SQL – Sheryl M. Larsen, Inc. 46

Tuning SQL SQL – Sheryl M. Larsen, Inc. 47

Tuning SQL SQL – Sheryl M. Larsen, Inc. 48

Tuning SQL SQL – Sheryl M. Larsen, Inc. 49

Tuning SQL SQL – Sheryl M. Larsen, Inc. 50

Tuning SQL SQL – Sheryl M. Larsen, Inc. 51

Tuning SQL SQL – Sheryl M. Larsen, Inc. 52

BIG_TABLE is access first

Possibly results in materialized and sorted BIGZ
workfile if DISTINCT cannot be satisfied using an
index

Great for tuning dynamic queries!

Tuning SQL SQL – Sheryl M. Larsen, Inc. 53

Tuning SQL SQL – Sheryl M. Larsen, Inc. 54

Tuning SQL SQL – Sheryl M. Larsen, Inc. 55

Tuning SQL SQL – Sheryl M. Larsen, Inc. 56

57

58

